不同熱處理溫度下鐵素體單一相在0.5mol/L 硫酸溶液中的極化曲線如圖5.62所示,從圖中可以看出,鐵素體單一相在0.5mol/L 硫酸溶液中的極化曲線形貌與2205雙相不銹鋼不同,雙相不銹鋼整體在0.5mol/L 硫酸溶液中的極化曲線陽極區(qū)具有明顯的活化鈍化區(qū)以及很寬電位范圍的鈍化區(qū),而鐵素體單一相沒有活化鈍化區(qū),且鈍化區(qū)比較窄。具體擬合數(shù)據(jù)如表5.20所列,腐蝕電位和自腐蝕電流隨固溶溫度的變化曲線如圖5.63所示。



  結合圖5.63和表5.20分析可知,鐵素體單一相的自腐蝕電位隨固溶溫度的增大,后減小,當固溶溫度為1050℃時,Ecorr的值達到最大為0.304V;當固溶溫度達到1150℃后,Bm的值達到最小為-0.130V.自腐蝕電流的變化規(guī)律同自腐蝕電位相反,為先減小,后增大,于1050℃達到最小值2.67×10-8A/c㎡,于1150℃達到最大值6.42×10-7A/c㎡.結合自腐蝕電位和自腐蝕電流的變化趨勢可知,當固溶溫度為1050℃時,鐵素體單一相在0.5mol/L 硫酸溶液中耐蝕性能最佳,隨著固溶溫度的升高,其耐蝕性變差。這與雙相不銹鋼整體在0.5mol/L 硫酸溶液中的耐蝕規(guī)律相一致。產生以上現(xiàn)象的主要原因1050℃固溶后,鐵素體Cr元素和Mo元素含量最高,Cr元素是鈍化膜形成的要元素,并且可以提高鈍化膜的致密度和修復速度。有研究表明,金屬表面化膜的性質與Cr/Fe的值和金屬/氧的值有關,Cr/Fe、金屬/氧的比值越高,膜的耐蝕性能越好,而Cr元素含量提高會使Cr/Fe、金屬/氧比升高。Mo元素可以配合Cr元素提高材料的耐蝕性能。隨著溫度的升高,鐵素體含量的升高以及Cr和Mo含量的降低導致平均單位中Cr和Mo含量的降低,相當于Cr和Mo被不斷稀釋,因此,當固溶溫度達到1150℃后,鐵素體單一相的耐蝕性變差。


  圖5.64為不同固溶溫度下2205 雙相不銹鋼奧氏體單一相在0.5mol/L 硫酸溶液中的極化曲線,奧氏體單一相極化曲線形狀與鐵素體單一相相似,均沒有雙相不銹鋼整體在0.5mml/1.1,50,溶液中出現(xiàn)的法化鈍化區(qū)以及很寬的純化區(qū)間。當固溶溫度較低時,剪氏體單一相極化曲線靠近圖的左上方,隨著固溶溫度的升高,曲線向右下方移動,其具體批合數(shù)據(jù)如表5.20折列,自腐蝕電位和自腐蝕電流隨溫度的變化曲線如圖5.65所示。




  結合表5.21和圖5.65可知,奧氏體單一相自腐蝕電位隨固溶溫度的升高呈現(xiàn)先增大后減小的趨勢,當固溶溫度為1050℃時,具有最大值0.159V,隨著固溶溫度的升高,自腐蝕電位變?yōu)?100℃的0.079V和1150℃時的-0.056V,說明1050℃奧氏體單一相在0.5mol/L 硫酸溶液中耐蝕傾向最好,隨著溫度的升高,耐蝕傾向變差。自腐蝕電流在固溶溫度較低時比較小,分別為1000℃的4.02×10-8A/c㎡,1050℃的3.78×10-8A/c㎡,1100℃的3.73×10-8A/c㎡,其值相差不多,當固溶溫度達到1150℃時,自腐蝕電流增加了一個數(shù)量級,其值為6.37×10~7A/c㎡.綜合自腐蝕電位和自腐蝕電流的變化趨勢可知,當固溶溫度較低時,奧氏體單一相在0.5mol/L硫酸溶液中的耐蝕性較好,當固溶溫度升高至1150℃后,其耐蝕性能變差。奧氏體單一相在0.5mol/L 硫酸溶液中耐蝕性變化趨勢與在3.5%NaCl溶液中相同。當固溶溫度升高時,Cr、Mo元素在奧氏體中的含量變化不大,但是Ni元素含量的下降,導致奧氏體單一相耐蝕性變差。


  圖5.66為不同固溶溫度下素體單一相與奧氏體單一相在硫酸溶液中耐蝕性能的對比圖,從圖中可以看出,固溶溫度較低時,鐵素體單一相自腐蝕電位較高。隨著溫度的升高,兩相自腐蝕電位差值變小,當固溶溫度為1150℃時,奧氏體單一相自腐蝕電位較鐵素體單一相略微提高。比較不同固溶溫度下的兩相的自腐蝕電流可以發(fā)現(xiàn),奧氏體單一相與鐵素體單一相的自腐蝕電流在不同固溶溫度下都相差很小。相對在3.5%NaCl溶液,鐵素體單一相在0.5mol 硫酸溶液中的腐蝕速率有了很明顯的增加,這說明在0.5mol 硫酸溶液中,鐵素體單一相與奧氏體單一相都表現(xiàn)出了較大的腐蝕活性,在宏觀上表現(xiàn)出均勻腐蝕的性質,其在0.5mol/L 硫酸溶液中的優(yōu)先腐蝕行為不明顯,這與其在3.5%NaCl溶液中的優(yōu)先腐蝕行為明顯不同。


66.jpg